/.

i FILE copy

Enterprise Management Network Architecture
Distributed Knowledge Base Support

Michel Roboam, Mark S. Fox and Katia ycara

AD-A230 113

CMU-RI-TR-90-21

Center for Integrated Manufacturing Decision Systems
The Robotics Institute

: Carnegie Mellon University
D T } C Pittsburgh, Pennsylvania 15213
FLECTE 3,
DEC2813905] §

(i &

November 1990

© 1990 Camegie Mellon University

Acomrerag iz zuszs elecsey

“ Caninizss Jnamiiaa

[DISTRIEUT;ON _STATEMENT K }

——. . an e e

Michel Roboam is currently visiting scientist in the Center for Integrated Manufacturing
Decision Systems and is sponsored by the AEROSPATIALE Company (France).

This research has been supported, in part, by the Defense Advance Research Projects Agency

under contract #F30602-88-C-0001, and in part by grants from McDonnell Aircraft Company
and Digital Equipment Corporation.

90 12 27 o071

)
Form Approved

REPORT DOCUMENTATION PAGE OMB No 0704-0188

Pypiic report Ag burgen ‘or vy -oiection of ntormaticn 'y estimatea tc average " mIul Der ALpOrSe. iNCILAING tRE TTME 1CF rBview NG INSIIUCTITNS, searthing ex s1.ng 3313 soures
Gatnering ang Mmainrtairing 1re gata needed, and COMPDIGTING aNE rev:ew "G tre (JHeCiCn St A Ormation Seng comments ragargirg this Duraen sstimate Or any Jther aspect ot this
cotiecuon ot Nt MANCH, NCUArg sUGGest.STs 1O reuGINg this Duraen 1 A/ashir2ton ~eagquariers Services. Cirectorate for ntormat cn Qoerations ano Repcrts, 12°9 ,etterson
Davis Hghway, Suite 1204 arhingten, /A 22202-4302. and te tre Otfice Nt Maragement and 3uoget Paperwork Reguction Project (07C4-0188). vasmington, 0C 23503

1. AGENCY USE ONLY (Leave Diank)

2. REPORT DATE
November 1990

3. REPORT TYPE AND DATES COVERED
Technical

4. TITLE AND SUBTITLE

S. FUNDING NUMBERS

Enterprise Management Network Architecture:
Distributed Knowledge Base Support

6. A 'THOR(S)

M. Roboam, M. S. Fox, and K. Sycara

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

The Robotics Institute
Carnegie Mellon University CMU-RI-TR-90-21
Pittsburgh, PA 15213 i

9. SPONSORING MUN1i CRING AGENCY NAME(S) AND ADDRESIES) 10. SPONSCRING MONITCRING

AGENCY REPORT NUMBER

DARPA F30602-88-C-0001

11. SUPPLEMENTARY NOTES :

123. OISTRIBUTICN AVAILABILITY STATEMENT ! 12b. SISTRIBUTION CCDE
|
. i
Approved for public release;
Distribution unlimited

13. AdSTRACT

Maxurum SO weras)

Achieving manufacturing efficiency requires that many groups that comprise a manufacturing
enterprise, such as design, pl-nning, production, distribution, field service, accounting, sales and
ruarketing, cooperate in order to achieve their common goal. In this paper we introduce the '
concept of Enterprise Management (EMN) as the element to facilitate the integration of distributed
heterogeneous functions of a manufacturing enterprise. The integration is supported by having

the network first play a more active role in the accessing and communication of information, and
second provide the appropriate protocols for the distribution, coordination, and negotiation of

tasks and outcomes. The EMN is divided into six layers: Network Layer, Data Layer, Information
Layer, Organization Layer, Coordination Layer, and Market Layer. Each of these layers provides a
portion of the elements, functions and protocols to allow the integration of a manufacturing
enterprise.

14. 3UBJECT TERMS $15. AUMBER QF PAGeS

88
16. PRICE CODE

17. SECURITY CLASS.FICATION 18 SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20. LIMITATION CF ABSTRACT '
QF REPORT OF THIS PAGE OF ABSTRACT '
unlimited unlimited unlimited ,
CRRES ~ALiz

Tiamar o oceemo 330 2L, o

Table of Contents
1. Introduction
2. Distributed Systems Definition
2.1 Distributed Systems Advantages
2.2 Decentralized Systems top-level description
2.3 Distributed System Dimensions
2.3.1 Parallel Distributed Processing Systems
2.3.2 Distributed Problem Solving Systems Definition
2.4 Distributed Systems capabilities
2.5 Distributed Systems Problems
3. Enterprise Management Network Node
4. Network Layer
4.1 Introduction
4.2 Network Specification
4.3 EMN-node specification
4.3.1 Schemata supporting EMN-nodes initialization
4.3.2 Functions supporting £MN-nodes initialization
4.3.3 Example of EMN-node initialization
4.4 Communication Procedures
4.4.1 Schemata supporting the communication procedures
4.4.2 Functions supporting the communication procedures
4.4.3 Example of communication function implementation
4.4.3.1 Message passing without blocking
4.4.3.2 Message reception
4.4.3.3 Message passing with blocking
4.5 Network Layer example
5. Data Layer
5.1 Introduction
5.2 Schemata manipulated
5.2.1 The information schema
5.22 The message schema
5.2.3 The answer schema
5.2.4 The communication schema
5.3 Information consistency checking primitives
5.4 Query language
5.4.1 Complete schema request
5.4.2 Simple retrieval
5.4.3 Qualified retrieval
5.4.4 Retrieval with ordering
5.4.5 Retrieval from more than one schema
5.4.6 Retrieval involving queries within queries
§.4.7 Locking and unlocking mechanism
5.5 Data Layer example
6. Information Layer
6.1 Introduction
6.2 Access privilege granting
6.3 Automatic information acquisition
6.4 Automatic information management
6.5 Information Layer example
6.6 Information Layer Implementation
6.6.1 Information distribution
6.6.2 The message generation sequence
6.6.3 The upcuiing activily
6.6.4 The message and answer reception sequence

(o JJEN I - WL BN N e

ii

6.6.4.1 The message reception sequence
6.6.4.2 The answer reception sequence
6.7 Information Layer utilization example
7. Conclusion
Acknowledgement
References

78
79
81

Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5;
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 54:
Figure 5-5:
Figure 5-6:
Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 6-5:
Figure 6-6:
Figure 6-7:
Figure 6-8:
Figure 6-9:

iii

List of Figures
Example of decentralized system
The elements of an EMN-ncde
Information exchanges overview
Decentralized system example
Message passing algorithm
Message passing steps
Checking mail box algorithm
Message reception steps
Message passing with blocking: step 1
Message passing with blocking: step 2
Message passing with blocking: step 3
Message passing with blocking: step 4
Network Layer implementation example
Query elements
Object flow representation
Decentralized Knowledge Craft running
Mutual table consistency checking
Information flows representation
Data Layer implementation example
Information Layer implementation example
Information distribution sequence
Hierarchical distribution example
Distribution sequence for an EMN-node initialization
Distribution message reception
Message generation sequence
Updating message generation sequence
Message and answer reception sequence
Answer control sequence

Accesion Fer |
orie NTIS CRAX)
D0 TaB -
coY 1 =
s LG TR U.anrouaued o
o Justification .
b e e L
By
Dotiov tic..]
Avotiaiiegy Lores
) PAvah o oijor
Dizt F gpezial
} E———— ‘-———Jv—— - —————

Ixxxix

List of Schemata

Schema 4-1: Network

Schema 4-2: DKC-System

Schema 4-3: DKC-Channel

Schema 4-4: local-DKC-Channel
Schema 4-5: Agent-1-DKC-System
Schema 4-6: agent-1-DKC-local-Channel
Schema 4-7: agent-2-DKC-Channel
Schema 4-8: Agent-1-DKC-System
Schema 4-9: DKC-message

Schema 4-10: DKC-queued-message
Schema 5-1: Information

Schema 5-2: Message

Schema 5-3: Information-search-message
Schema 5-4: Updating-message
Schema 5-5: LC-distribution-message
Schema 5-6: UT-distribution-message
Schema 5-7: distribution-END-message
Schema 5-8: Answer

Schema 5-9: Answer-example
Schema 5-10: Communication
Schema 5-11: Communication
Schema 6-1: CLASS

Schema 6-2: NO-SCHEMA-SPEC
Schema 6-3: NO-SLOT-SPEC
Schema 6-4: NO-VALUE-SPEC
Schema 6-5: Answer-message
Schema 6-6: Message-queue

Schema 6-7: New-message

Schema 6-8: Control-answer
Schema 6-9: Answer-queue

Schema 6-10: New-answer

(

~

Abstract

Achieving manufacturing efficiency requires that many groups that comprise a manufacturing
enterprise, such as design, planning, production, distribution, field service, accounting, sales and
marketing, cooperate in order to achieve their common goal. In this paper we introduce the concept
of Enterprise Management Network (EMN) as the element to facilitate the integration of distributed
heterogeneous functions of a manufacturing enterprise. The integration is supported by having the
network first play a more active role in the accessing and communication of information, and second
provide the appropriate protocols for the distribution, coordination, and negotiation of tasks and
outcomes. The EMN is divided into six layers. Network Layer, Data Layer, Information Layer,
Organization Layer, Coordination Layer, and Market Layer. Each of these iayers provides a portion
of the elements, functions and protocols to allow the integration of a manufacturing enterprise.

1. Introduction

This report presents the architecture, the elements and the organization of an Enterprise
Management Network (E.M.N.) to support the integration of the manufacturing enterprise. The
optimization of the manufacturing enterprise can only be achieved by greater integration of
activities throughout the production life cycle. Integration must not only address the issues of shared
information and communication, but how to coordinate decisions and activities throughout the firm.

Achieving manufacturing efficiency requires that the many groups that comprise a manufacturing
enterprise, such as design, planning, production, distribution, field service, accounting, sales and
marketing, cooperate in order to achieve their common goal. Cooperation can take many forms:

e Communication of information relevant to one or more groups’ tasks. For example,
sales informing marketing of customer requirements, or production informing the
controller of production performances.

¢ Feedback on the performance of a group’s task. For example, field service informing
design and manufacturing of the operating performance of a new product.

¢ Monitoring and controlling activities. For example, controlling the execution of
operations on the factory floor.

o Assignment of new tasks. For example, a new product manager signing up production
facilities to produce a new product.

¢ Joint decision making where groups of "agents" have to negotiate and cooperate in
order to achieve their task (which can be antagonistic or not). For example, an inventory
manager and a scheduler negotiating to define the manufacturing activity.

An Enterprise Managemeni Network is viewed as the "nervous system” of the enterprise, enabling
the functions described above. It is more than a network protocol (e.g., MAP) in that it operates and
participates at the application level. Its philosophy is different in terms of participation and
structuring. Such a system must be defined in such a generic way that it can be integrated with all
kinds of applications an enterprise can use. The following describes the capabilities provided by the
Enterprise Management Network Architecture:

¢ Information routing: given a representation for information to be placed on the
network and a representation of the goals and information needs of groups on the
network, the information routing capability is able to provide the following:
* Static routing: transfering information to groups where the sender and the
receivers are pre-defined.

» Dynamic routing: transfering information to groups which appear to be interested
in the information. This is accomplished by matching a group’s goals and
information needs to the information packet.

* Retrospective routing: reviewing old information packets to see if they match new
goals and information requirements specified by a group.

¢ Closed loop system: Often, the communication of information results in some activity,
which the initiator of the communication may be interested in. The EMN will support
the providing of feedback in two modes:
* Pre-define feedback: operationalizes pre-defined information flows between groups
in the organization. For example, production providing feedback to sales on the
receipt of orders.

* Novel feedback: Providing feedback for new and novel messages.

e Command and control: Given a model of the firm which includes personnel,
departments, resources, goals, constraints, authority and responsibility relations, the
EMN will support these lines of authority and responsibility in the assignment,
execution and monitoring of goals and activities.

¢ Dynamic task distribution: Supporting the creation of new organizational groups and
decomposition, assignment and integration of new goals and tasks, contracting and
negotiation are examples of techniques to be supported.

The design of the Enterprise Management Network is divided into six levels:

6. Market Layer

5. Coordination Luyer

4. Organization Layer

3. Information Layer

2. Data Layer

1. Network Layer

The Network Layer provides for the definition of the network architecture. At this level, the nodes
are named and declared to be part of the network. Message sending (or message passing) between
nodes is supported along with synchronization primitives (such as "blocking”). Security mechanisms
are also provided such as message destination recognition.

The Data Laye. provides for queries and responses to occur between nodes in a formal query
language patterned after SQL [6, 7].

The Information Layer provides "invisible” access to information spread throughout the EMN. The
goal is to make information located anywhere in the network locally accessible without having the
programs executed locally know where in the network the information is located nor explicitly
request its retrieval. This Layer also includes information distribution focussed on data classes,
keywords ar.] content and security mechanisms such as agent blocking and unblocking and
schemata locking and unlocking. All the information queries expressed at this layer use the query
language defined at the data layer.

The Organization Layer provides the primitives and elements (such as goal, role, responsibility
and authority) for distributed problem solving. It allows automatic communication of information

based upon the roles a node plays in the organization. Each EMN-node knows its resp~nsibility, its
goals, and its role in the enterprise organization.

The Coordination Layer provides the protocol for coordinating the activities of the EMN-nodes
through negotiation and cooperation mechanisms.

The Marke: Layer provides the protocol for coordination among organization in a market
environment. It supports the distribution of tasks and the negotiation of change and the strategies
to deal with the environment.

In this report, we present in details the three first layers ot this architecture (Network, Data and
Information) which define the distributed knowledge base management [23, 1] supported by the
EMN architecture. In the next report [33], we will present the problems of distributed problem
solving and how they are covered and supported by the IN architecture.

The purpose of this architecture is to support, through the three first layers, distributed
knowledge base and, through the three upper levels, distributed problem solving. Distributed
systems have advantages but also inconveniences. Their characteristics are defined in terms of
coupling and grain size. Qur architecture must be able to support the different types of distributed
systems we present in section 2.

In the next section, we focus our attention on the content of an Enterprise Management Network
node (EMN-node). We describe its content and characteristics. Then, each of the three first layers of
the EMN architecture is described in turn. The actual implementation of this system is presented in
[34].

2. Distributed Systems Definition

The Enterprise Management Network Architecture provides the elements and functions to define,
implemert and support a distributed system. A distributea system is a system with many
processing and many storage devices, connected together by a network.

2.1 Distributed Systems Advantages
Potentially, this makes a distributed system more powerful than a conventional, centralized one in
two ways:

¢ First, it can be more reliable. Every function can be replicated several times. When a
processor fails, another can take over the work. Each file can be stored on severa! disks,
so a disk crash does not destroy any information. We call this property fault tolerance.

* Second, a distributed system can do more in the same amount of time, because many
computations can be carried out in parallell,

We will say more about these advantages below.

2.2 Decentralized Systems top-level description

"In a very general terms, a system is said to be distributed when it includes several geographically
distinct components cooperating in oider to achieve a common distributed ¢ask" [2]. But this
definition is not true for all the domains. If we consider, for example, games involving two players,
the aim of each one is to win the game. So the two agents of this decentralized system do not
cooperate, they compete (they cooperate in playing the game, i.e., they follow some rules, but they
compete about sub-goals-winning).

The set of nodes in the system is usually organized according to various domain dependent
topologies. Decentralized systems in every day life come from a wide variety of areas, e.g., a business
firm, a system for traffic control, ete.

The processing nodes in a decentralized system may all be identical in their capabilities or they
may each possess specific skills. Whatever the configuration is, in a decentralized system both the
control (process) and the knowledge can be distributed throughout the system.

In actuality, there is a range of approaches for decentralized architecture, from an almost
centralized system to a distributed system with a centralized planning and control element, to a
distributed system with a distributed, hierarchical group of control elements, to a fully distributed,
"flat” system in which each element is responsible for its own control.

Moreover, the organization amongst the elements may either be static, remaining the same as
time elapses, or dynamic, adapting itself as the requirements of the environment needs it. In any
case, the processing nodes, or agents, contain knowledge about themselves and their environment,
and a logical capability to work on that knowledge. In other words, the agents have a memory and a
processor.

Note we are talking about large grain parallelisms not connection machine style parallelism.

But we have a limitation for the memory aspect: we cannot have in a decentralized agent all the
needed information for completely sutonomous running (the concept of bounded rationality [35]).
This means that we must acquire some information from the other agents of the decentralized
system: the agent must communicate. Bounded rationality implies that both the information a
computin~ agent can absorb and the detail of control it may handle are limited.

2.3 Distributed System Dimensions

Since almost any real world system is decentralized and, moreover, open in nature [19, 27, 20], the
spectrum of categories for decentralized system is infinite. But we can use two attributes to
categorize decentralized systems along two continuous dimensions: the degree of coupling among
the agents (or nodes), and the grain size of the processors of the agents.

Coupling is a measure related to links between the agents in the system. Loose coupling means
that information exchange amongst the agents is limited. In loosely coupled systems the agents
spend most of their time in local processing rather than in communication among themselves. Tight
coupling, therefore, indicates that there is no practical physical limit on the bandwidth of the
communication channel between the agents. Because of excessive communication, tight coupling also
indicates that the concept of bounded rationality of computing does not completely apply [35].

The grain size of the processors measures the individual problem-solving power of the agents. In
this definition, problem-solving power amounts to the conceptual size of a single action taken by an
agent visible to the other agents in the system. If the grain is coarse then the processing nodes are
themselves rather sophisticated problem-solving systems with a fair amount of complexity. In
coarse-grained applications, the distribution may be characterized to be, therefore, at the task level.
Fine grain often indicates that the individual processors are functionally relatively simple, i.e., they
do not exhibit any "intelligence” per se, and that their number in the system is substantial. Thus, the
distribution in fine-grained applications is at the statement level as opposed to task level
distribution.

2.3.1 Parallel Distributed Processing Systems

Decentralized, fine-grained systems with tight coupling are often referred to as parallel
distributed processing systems {24, 8, 5, 19]. The processing aspect emphasizes concurrent execution
of functionally decomposable taska.

The objective in parallel distributed processing systems is usually load balancing of shared
informational and physical resources. In distributed processing systems, the computational or
syntactic motivations for decentralization are highlighted:

¢ speed,

e performance/cost,
¢ modularity,

e availability,

¢ scalability,

o reliability,

» extensibility,
o flexibility.

Although the current trends in the cost and availability of computer hardware would suggest that
adding up enough conventional, low cost processors would result in an immense overall computing
power with a reascnable investment, this has not proven to be the case. On the contrary, it has been
recognized that a severe bureaucracy “bog-down” effect in multiorocessor systems calls for totally
new architectural strategies to operate on the higher degree complexities in routine problem solving.

2.3.2 Distributed Problem Solvine Systems Definition

As the opposite of PDP, we have aistributed problem solving systems. These are defined
informally as networks of loosely coupled, relatively coarse-grained, semiautonomous, "artificially
intelligengent” asynchronous problem-solving agents, cooperating (or competing according to the
domain) to fulfill their global mission. Asynchronous means that the agents are thought to function
concurrently [24]). Cooperation means that because no node is capable of solving the entire problem
by itself; the nodes have to work as a team and exchange knowledge about the tasks, results, goals,
and constraints to solve the global problem or set of problems.

The degree of cooperation between the nodes in a decentralized problem-solving system may
vary. On one extreme, the nodes may all be pursuing a common goal and be thus fully cooperative.
This assumption is often referred to as th- benevolent agent assumption. On the other extreme of
the cooperation continuum, the nodes are nonbenevolent, i.e., they are self-interested, possessing
conflicting goals and preferences. Thus, a process of negotiation to resolve the conflicts becomes
crucial.

Decentralized problem-solving architectures with the last set of characteristics mentioned above
are often categorized as nearly decomposable systems. In nearly decomposable systems, the
interactions among the components are weak but not negligible. The emphasis in studying
coordination within nearly decomposable systems is on dealing with the problems arising from
restricted communication and bounded rationality. In the case of decentralized problem solving, the
semantic motivation to pursue decentralization are thus addressed in terms of:

e complexity,

¢ possibility and

 natural decomposition.

2.4 Distributed Systems capabilities
As mentioned above, a distributed system has to be capable of parallel execution and of continuing
in the face of single-point failures, so it must have:

e Multiple processing elements that can run independently. Therefore, each processing
element, or node, must contain at least a CPU and memory?.

ZNote that multiple EMN-nodes may share a processor

e There has to be communication between the processing elements, so a distributed
system must have interconnection hardware which allows processes running in
parallel to communicate and synchronize.

e A distributed system cannot be fault tolerant if all nodes always fail simultaneously. The
system must be structured in such a way that processing elements fail
independently.

¢ Finally, in order to recover from failures, it is necessary that the nodes keep shared
state for the distributed system.

2.5 Distributed Systems Problems
All these advantages of distributed systems cannot be satisfied due to the complexity of designing
such systems. Some examples of system problems are:
« the amount of interconnections and risk of failure,

e the interferences between processes,

e the problem of propagation of effects between processes,

¢ the information inconsistency due to its duplication,

¢ the effects of scale due to the dimension of distributed systems and

e the partial failure of one processor that can perturbate the other ones
(29, 18, 22, 27, 151].

The EMN architecture we define in this paper covers most of these aspects. The utilization of
Artificial intelligence techniques to support communication and distribution offers help in solving
most of these problems, especially propagation of effect, information inconsistency and partial
failure.

3. Enterprise Management Network Node

The Enterprise Management Network links together two or more application nodes (EMN-nodes)
by providing the "giue” that integrates the manufacturing enterprise through architectures and
mechanisms to support decision making at all levels of the organization. For example, the CORTES
system [16] is composed of an uncertainty analyser, a planner, a scheduler, a factory model and two
dispatchers responsible for several machines (figure 3-1). Each is defined as an EMN-node.

UNCERTAINTY

FACTORY
ANALYSER PLANNER SCHEDULER MODEL

DISPAT9 DISPATCHER-2

CMACHINE-1 Q-— CMACHINE-Z‘!
(MACHINE-LZ)— (MACHINE-22)—

Figure 3-1: Example of decentralized system

Each EMN-node consists of the following subsystems? (figure 3-2):
» Problem Solving Subsystem,

¢ Knowledge Base,
¢ Knowledge Base Manager, and

e Communication Manager.

The Problem Solving Subsystem represents all the rules and functions which allow the EMN-
node to solve problems related to its domain. The local execution cycle is triggered either by the
internal transactions generated during local problem solving, or by external events forwarded to the
EMN-node by the Communication Manager.

Each EMN-node contains a locally maintained Knowledge Base to support its problem solving.
It is composed of objects which may be either physical objects (products, resources, operations, etc) or

3Currently implemented in CommonLisp

conceptual objects (customer orders, process plans, communication paths, temporal relations, etc).
The knowledge base is expressed as CRL* schemata [26].

The Knowledge Base Manager manages information exchanges between the problem solving
subsystem and the knowledge base, maintains the consistency of the local knowledge base, and
responds to request made by other EMN-nodes. In the Enterprise Management Network, knowledge
and data may be distributed throughout the network. It is the philosophy of the system that
knowledge does not have to be available locally in order for it to be used by the EMN-node.
Therefore, knowledge, in the form of schemata, fall into one of two classes: that owned by the
knowledge source which must be stored locally, and knowledge used by the knowledge source, in
which the original is stored at another EMN-node and a copy is stored locally.

KBM
SEARCHER RESPONDER

Figure 3-2: The elements of an EMN-node

A problem that arises in supporting the exchanges between the problem solving subsystem and
the knowledge base is the unavailability of schemata locally. The problem solver often refers to
objects that cannot be found locally, but may be found in another EMN-node’s knowledge base. At
the time of reference, the problem solver may or may not know where in the Enterprise Management
Network the knowledge resides. It is the responsibility of the Knowledge Base Manager to "hunt
down” the missing knowledge and to respond to like requests from other EMN-nodes. To accomplish
this, the Knowledge Base Manager works with the Communication Manager. It both manages
the search for information in the EMN and responds to like requests from other EMN-nodes. To
perform these activities, the Communication Manager has two modules:

¢ The searcher communicates via message sending with other EMN-nodes. The searcher
peforms two tasks: searching for knowledge not available locally, and the updating of
knowledge changed and owned by the EMN-node. The policy for updating is defined in
section 5.

¢ The responder answers messages originating from other EMN-nodes’ searchers, and
updates the local knowledge base according to updating messages.

The communication manager manages four types of events:
¢ Triggering: information that triggers the node’s processing.

‘CRL stands for Carnegie Representation Language.

10

e Dynamic retrieval: Requests for information not available in its knowledge base but
necessary to perform its task. This information needs appear during the internal
processing of an EMN-node.

¢ Updating information: When an EMN-node, as the owner of some schemata, modifies
these schemata, the searcher dispatches the modifications to other EMN-nodes that have
local copies of these schemata. The responder may or may not update a local copy
depending on the usage at the receiving EMN-node. Being the owner of a schema
means, the EMN-node is the only one allowed to globally modify the content of a schema.
But each EMN-node having a local copy of a schema can locally modify the content of
that schema.

¢ T--ansaction request: Similar to remote procedure calls.

Probiem Solving

Subsystem - M (info. R)
- M (update)
f
- info. update . >
- info. R - info. A Searcher CT
l———
v - A (info. A)
Knowledge Base T
Manager
- A (info. A)
r
- info. update o
g ormf::. A Responder
—
\ 4 - M (update)
- M (info. R)

Knowledge Base
Subsystem

Figure 3-3: Information exchanges overview

We summarize all these exchanges between the modules of an EMN-node in figure 3-3. This figure
shows the different types of information sent and received by each module (M stands for Message, A
stands for Answer, R stands for Request, T stands for Translator and CT stands for Correspondance
Table). Their content will be discussed in the following sections.

11

To illustrate the functionalities of the three first layers of the EMN architecture, we will consider
a decentralized system composed of three agents, connected by a network. Each agent has a specific
Problem Solving subsystem (PS) and a specific Knowledge Base subsystem (KB) (figure 3-4). We
describe in this first figure an empty decentralized system, e.g., without the Enterprise Management
Network. We will extend this example by adding at each Level description the specific elements,
functions and protocols defined there.

NETWORK

AGENT-1 AGENT-2

AGENT-3

Figure 3-4: Decentralized system example

12
4, Network Layer

4.1 Introduction

The Network Layer defines the EMN-nodes that will participate in the Enterprise Management
Network. It assumes the existence of all the hardware and software facilities for this structure such
as: a network (in our case DECnet5), computers (in our case VAX-station® 3200s) and application
software (in our case Knowledge Craft?). It allows the identification of an EMN-node and specifies
its basic elements such as mail box, semaphore box, queues and low level message. In addition to
these elements, the Network Layer provides some basic primitives for this architecture. These
primitives are message passing functions with blocking and without blocking.

The Network Layer defines the following network components:

e EMN-nodes represent problem solving agents. They include the basic communication
objects: queues, low level message, mail box and semaphore box8. Each EMN-node
initialization, is specified by an EMN-node schema (schema 4-2).

e Channels define communication links between EMN-nodes. Each channel is defined as
an instance of the channel schema (schema 4-3).

e Messages can be sent along channels between EMN-nodes. During the information
transfer, an EMN-node may be suspended (blocked) while awaiting a reply. Each
message is defined as an instance of the network-message schema. These instances are
stored in queues (supported by the network-message-queue schema). The message
passing and message reception is supported by some basic communication functions
dependent on the hardware and operating system.

o Protection is provided so that messages can only be processed by legal EMN-nodes.

o Synchronization primitives are defined to synchronize the internal problem solving of an
EMN-node and communication activities. Primitives such as "block-agent” are
implemented to interrupt the problem solving process until the excution of the "unblock-
agent” primitive. Blocking is used when information is needed for problem solving but
not available locally in the knowledge base system. In that case, the problem solving is
interrupted until the reception of the information. The blocking functions use selective
interruption: they only suspend the problem solving process and keep running the
message sending and message reception processes. This capability is very important in
terms of performance as well as coherence of the distributed system. Since the blocking
function executes selective blocking of the problem solving, during such an interruption
an agent is still able to answer received messages, to update and to distribute
information.

5DEChnet is a registered trademark of Digital Equipment Corporation.

$VAX is a registered trademark of Digital Equipment Corporation.
TKnowledge Craf is a registered trademark of Carnegie Group Inc.

3Note that these two last objects are dependent of the used operating system

13

4.2 Network Specification

Each implementation of our Enterprise Management Network must be specified. For this
purpose, we have created a schema called Network. It describes the main characteristics of the
global decentralized system by defining specific names for the net and its EMN-nodes (schema 4-1).

Schema 4-1: Network

Network
SLOT FACET VALUE

Name Value: | type string
Restriction:

Type Value: | network type
Restriction:

EMN-nodes Value: | type EMN-node-name*
Restriction:

In fact, each instance of the network schema represents a specific implementation of our
Enterprise Management Network architecture.

4.3 EMN-node specification

The Network Layer of the manufacturing architecture provides the most primitive functions that
enable manufacturing processes to participate in a distributed manufacturing system. All the
schemata presented at this layer must be duplicated in every EMN-node.

4.3.1 Schemata supporting EMN-nodes initialization

At the Network Layer, we intend to model the main characteristics of each EMN-node and
initialize it as a member of the decentralized system. We have defined an EMN-node as a
combination of a Problem Solving subsystem, a Knowledge Base subsystem and a communication
subsystem. The communication subsystem is composed of several elements. All the information
that identifies an EMN-node must be stored in a schema. The EMN-node identification, has been
implemented using 8 DKC-system? schema. This schema indicates all the details related to an EMN-
node. The initialization of an EMN-node as a member of the decentralized system is done by creating
an instance of the DEC-system schema (schema 4-2) in the corresponding EMN-node. This schema
initializes an EMN-node and also all the elements necessary for the communication activity: the
queues, the timers (one for the updating activity and one for the message reception), the flags and
the triggers. This function supports mainly the local initialization of an EMN-node but does not
support its instantiation as part of the decentralized system. Only local elements are defined in the
DKC-system schema. The creation of this schema is supported by a Lisp function called: DKC-init.

The DKC-system schema contains the name of its local-channel schema. This schema indicates
the addresses of its mail-box file and of its semaphore-box file. The third slot of the DKC-system

PDKC stands for Decentralized Knowledge Craft

14

schema is the list of channels with the other EMN-nodes. Each time a channel is created, its name is
stored as a value of this slot. The queued-messages slot contains the new received messages. All the
other slots define names and addresses of flags and VMS routines to support the message passing
functionality.

Schema 4-2: DKC-System

DKC-System
SLOT FACET VALUE

Initialized Restriction: | t/nil

Local-channel Value: | type dke-channel
Restriction:

Channels Value: | type dkc-channel*
Restriction:

Queued-messages Value: | type dkc-queued-message*
Restriction:

Interrupt-function Value: | type lispobj/nil
Restriction:

Interrupt-lost Restriction: | nilt

Update-lost Restriction: | nilt

Timer-efn V